Описание магнитного гистерезиса в электротехнике и электронике: плюсы и минусы этого явления

Описание магнитного гистерезиса в электротехнике и электронике: плюсы и минусы этого явления

Содержание
  1. Терминология
  2. Гистерезис и электроника

Гистерезис магнитный

Основа работы различных электротехнических приборов состоит в электромагнитном явлении. Магнитные поля взаимодействует благодаря сердечнику с насаженной катушкой из проводимых, медных, металлов.

Они находятся в реле, включателях, контакторах, электродвигателях, магнитах. В сердечниках и есть магнитный гистерезис.

Данная статья поможет разобраться, где он нужен, а где наносит вред оборудованию.

Терминология

Гистерезис основа магнитный

Гистерезис происходит от греческого языка, означает отставание или запаздывание. Это понятие используют в различных отраслях научных и технических знаний. Самое общее значение этого слова подразумевает разную манеру поведения систем в противоположном влиянии.

Детально это можно объяснить следующим образом. Гистерезис – это условие, возникающее вследствие воздействия одной физической величины, намагниченности, на другую физическую величину из внешней среды, магнитное поле.

Такое условие можно наблюдать в том случае, если состояние предмета изменяется под давлением внешних условий в этот же и предыдущий период времени.

Гистерезис явление магнитный

Неоднозначность зависимости таких значений может наблюдаться в разных процессах потому, что, чтобы состояние тела претерпело изменение, ему необходимо определенный промежуток времени. И чем выше медлительность изменения внешней среды, тем меньше такое отставание. Это и является гистерезисом. Он бывает магнитным, диэлектрическим и упругим условием.

Нас интересует данное магнитное явление, возникающее в электротехнике. Оно является важной характеристикой для металла, из которого изготавливают сердечник электрической машины или аппарата. Давайте рассмотрим этот процесс с помощью графика.

 

 

Гистерезис явление магнитный

Здесь изображена первоначальная кривая намагничивания ферромагнитного материала. Подробно это можно описать так.

Изначально намагнитив сердечник вплоть до насыщения в отрезке «индукция Bs, напряженность Hs» и снизив напряженность от +Hs до 0, индукция не изменится по кривой 3, а пойдет по проходящему выше участку ABr кривой I. Намагниченность материала останется при Н=0, а поле приобретет характеристику остаточной индукции Br.

При увеличении Н от 0 до значения Н=-Hs, изменится направление тока в катушке и знак напряженности магнитного поля Н. При достижении индукцией нулевых значений при указании напряженности поля Н=Нс, что является коэрцитивной силой, изменится знак и будет достигнута индукция насыщения В=-Вs при Н=-Нs.

 

Намагнитившись, в течение полного цикла зависимостью B (H) описывается петля I, которая называется предельная петля магнитного гистерезиса. Исходя из величины Pc по предельной петле бывают мягкие и твердые ферромагнетики.

В практических целях это можно описать следующим образом. Проводники пропускают ток и способствуют возникновению магнитного и электрического полей вокруг него. Получение электромагнита происходит путем сматывания провода в катушку и пропуска тока. Индуктивность катушки увеличится при помещении внутри нее сердечника с увеличением сил, возникших у нее.

Гистерезис зависим от металла, из которого изготовлен сердечник, именно его вид определяет свойства и работу, обозначаемую кривыми намагничивания.

Гистерезис явление магнитный

При использовании магнитотвердых металлов типа стали, мы заметим расширение гистерезиса. Если наш выбор остановится на мягких материалах, то будем наблюдать сужение графика.

Через катушку в цепи с переменным током будут наблюдаться движения тока в разных противоположных направлениях.

Вследствие этого все время будет происходить переворачивание полюсов. Этот процесс является одновременным в случае катушки, у которой отсутствует сердечник.

Однако при его наличии все немного изменится. Произойдет постепенное намагничивание, магнитная индукция возрастет и горизонтальный участок графика, обозначаемый как участок насыщения, будет достигнут.

Гистерезис проявление магнитный

Если целенаправленно менять направление тока и магнитного поля, то произойдет перемагничивание сердечника. Даже при простом выключении тока и исключении магнитного поля сердечник останется намагниченным, при этом претерпит некоторые изменения.

Для его размагничивания до первоначальных характеристик необходимо создание минусовой напряженности магнитного поля. Значит, катушка с током должны сработать в противоположную сторону.

Здесь следует снова упомянуть такое понятие как коэрцитивная сила и дать ей понятное определение, исходя из практики. Она показывает насколько трудный процесс намагничивания, когда сердечник полностью размагничен. Лучше, если она малая.

Обратное перемагничивание происходит также, но при участии нижней ветви.

Это означает, что сердечник будет магнититься за счет части энергии в цепи переменных токов, что приведет к снижению коэффициента полезного действия электродвигателя, трансформатора и нагреву деталей.

Для того, чтобы потери в связи с перемагничиванием сердечника были минимальными, гистерезис и показатели коэрцитивной силы должны быть малы.

Возникает данное явление в работе реле, в иных электромагнитных устройствах и в токе выключения и заключения.

Реле сработает и в выключенном состоянии, если подать немного тока. При включении ток заключения будет выше тока удержания. Отключение произойдет, если эти величины изменятся на прямо противоположные значения.

Гистерезис и электроника

Гистерезис обладает и полезными функциями. Так, магнитный гистерезис используют пороговые элементы и триггеры Шмидта для того, чтобы стабилизировать функционирование приборов, срабатывающих при помехах или случайных всплесках напряжения.

Задержавшись во времени можно исключить случайные отклонения.

По такому принципу организована работа электронного термостата. Он срабатывает только, достигнув задаваемого значения температуры.

Эффект задерживания позволяет исключить слишком высокую частоту срабатываний и предотвращает отключение термостата из-за изменений температур.

Вкратце опишем оба способа работы:

  1. Если бы магнитный гистерезис отсутствовал, то при достижении заданных параметров (температуры) термостат бы включался и отключался. Например, при установке регулятора температуры в 24 градуса тепла и при достижении этого значения, термостат отключится. Однако он включится снова, как только температура начнет опускаться. При этом в комнате может быть все еще достаточно тепло и включение термостата можно отложить до более низкого значения температуры. Потому, частые включения и отключения не рациональны в данном случае.
  2. При присутствии такого явления как магнитный гистерезис можно осуществить некоторую задержку в определенном охвате значений. Если брать за основу вышеописанный пример с 24 градусами, то термостат при их достижении точно так же отключится. Но включится он не сразу, как только упадет температура. Время его повторного включения можно будет задать. Например, если это значение составит 5 градусов, то снова включение термостата произойдет при падении температуры до 19 градусов.Эту задержку можно контролировать и устанавливать по своему усмотрению.

В заключение подведем небольшой итог. Явление магнитного гистерезиса плохо влияет на электрические приводы и трансформаторы, однако для работы регуляторов он необходим.

Комментариев нет, будьте первым кто его оставит